
Chapter 8-1: Main Memory

 Background

 Swapping

 Contiguous Memory

Allocation

 Paging

 Structure of the Page Table

 Segmentation

 Example: The Intel Pentium

 Objectives

 To provide a detailed description of

various ways of organizing memory

hardware

 To discuss various memory-

management techniques, including

paging and segmentation

 To provide a detailed description of

the Intel Pentium, which supports both

pure segmentation and segmentation

with paging

Background

 Program must be brought (from disk) into memory and

placed within a process for it to be run

 Main memory and registers are only storage CPU can

access directly

 Register access in one CPU clock (or less)

 Main memory can take many cycles

 Cache sits between main memory and CPU registers

 Protection of memory required to ensure correct

operation

Base and Limit Registers

• A pair of base and limit registers define the logical address

space

Binding of Instructions and Data to Memory

• Address binding of instructions and data to memory

addresses can happen at three different stages

– Compile time: If memory location known a priori,

absolute code can be generated; must recompile code if

starting location changes

– Load time: Must generate relocatable code if memory

location is not known at compile time

– Execution time: Binding delayed until run time if the

process can be moved during its execution from one

memory segment to another. Need hardware support for

address maps (e.g., base and limit registers)

Multistep Processing of a User Program

Logical vs. Physical Address Space

• The concept of a logical address space that is bound to a

separate physical address space is central to proper

memory management

– Logical address – generated by the CPU; also

referred to as virtual address

– Physical address – address seen by the memory unit

• Logical and physical addresses are the same in compile-

time and load-time address-binding schemes; logical

(virtual) and physical addresses differ in execution-time

address-binding scheme

Memory-Management Unit (MMU)

• Hardware device that maps virtual to physical

address

• In MMU scheme, the value in the relocation register

is added to every address generated by a user

process at the time it is sent to memory

• The user program deals with logical addresses; it

never sees the real physical addresses

Dynamic relocation using a relocation register

Dynamic Loading

• Routine is not loaded until it is called

• Better memory-space utilization; unused routine is

never loaded

• Useful when large amounts of code are needed to

handle infrequently occurring cases

• No special support from the operating system is

required implemented through program design

Dynamic Linking

• Linking postponed until execution time

• Small piece of code, stub, used to locate the

appropriate memory-resident library routine

• Stub replaces itself with the address of the routine,

and executes the routine

• Operating system needed to check if routine is in

processes’ memory address

• Dynamic linking is particularly useful for libraries

• System also known as shared libraries

Swapping

• A process can be swapped temporarily out of memory to a backing
store, and then brought back into memory for continued execution

• Backing store – fast disk large enough to accommodate copies of all
memory images for all users; must provide direct access to these
memory images

• Roll out, roll in – swapping variant used for priority-based scheduling
algorithms; lower-priority process is swapped out so higher-priority
process can be loaded and executed

• Major part of swap time is transfer time; total transfer time is directly
proportional to the amount of memory swapped

• Modified versions of swapping are found on many systems (i.e., UNIX,
Linux, and Windows)

• System maintains a ready queue of ready-to-run processes which
have memory images on disk

Schematic View of Swapping

Contiguous Allocation

• Main memory usually into two partitions:

– Resident operating system, usually held in low memory with

interrupt vector

– User processes then held in high memory

• Relocation registers used to protect user processes from each

other, and from changing operating-system code and data

– Base register contains value of smallest physical address

– Limit register contains range of logical addresses – each

logical address must be less than the limit register

– MMU maps logical address dynamically

HW address protection with base and limit registers

Contiguous Allocation (Cont.)

• Multiple-partition allocation

– Hole – block of available memory; holes of various size

are scattered throughout memory

– When a process arrives, it is allocated memory from a

hole large enough to accommodate it

– Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

Dynamic Storage-Allocation Problem

• First-fit: Allocate the first hole that is big enough

• Best-fit: Allocate the smallest hole that is big enough; must
search entire list, unless ordered by size

– Produces the smallest leftover hole

• Worst-fit: Allocate the largest hole; must also search entire list

– Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes

First-fit and best-fit better than worst-fit in

terms of speed and storage utilization

Fragmentation

• External Fragmentation – total memory space exists to

satisfy a request, but it is not contiguous

• Internal Fragmentation – allocated memory may be slightly

larger than requested memory; this size difference is

memory internal to a partition, but not being used

• Reduce external fragmentation by compaction

– Shuffle memory contents to place all free memory

together in one large block

– Compaction is possible only if relocation is dynamic, and

is done at execution time

– I/O problem

• Latch job in memory while it is involved in I/O

• Do I/O only into OS buffers

Paging

• Logical address space of a process can be noncontiguous;

process is allocated physical memory whenever the latter is

available

• Divide physical memory into fixed-sized blocks called frames

(size is power of 2, between 512 bytes and 8,192 bytes)

• Divide logical memory into blocks of same size called pages

• Keep track of all free frames

• To run a program of size n pages, need to find n free frames and

load program

• Set up a page table to translate logical to physical addresses

• Internal fragmentation

Address Translation Scheme

• Address generated by CPU is divided into:

– Page number (p) – used as an index into a page table which

contains base address of each page in physical memory

– Page offset (d) – combined with base address to define the

physical memory address that is sent to the memory unit

– For given logical address space 2m and page size 2n

page number page offset

p d

m - n n

Paging Hardware

Paging Model of Logical and Physical Memory

Paging Example

32-byte memory and 4-byte pages

Free Frames

Before allocation After allocation

Segmentation

• Memory-management scheme that supports user view of memory

• A program is a collection of segments. A segment is a logical unit
such as:

 main program,

 procedure,

 function,

 method,

 object,

 local variables, global variables,

 common block,

 stack,

 symbol table, arrays

User’s View of a Program

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

Segmentation Architecture

• Logical address consists of a two tuple:

 <segment-number, offset>,

• Segment table – maps two-dimensional physical addresses;

each table entry has:

– base – contains the starting physical address where the

segments reside in memory

– limit – specifies the length of the segment

• Segment-table base register (STBR) points to the segment

table’s location in memory

• Segment-table length register (STLR) indicates number of

segments used by a program;

 segment number s is legal if s < STLR

Segmentation Architecture (Cont.)

• Protection

– With each entry in segment table associate:

• validation bit = 0  illegal segment

• read/write/execute privileges

• Protection bits associated with segments; code sharing occurs

at segment level

• Since segments vary in length, memory allocation is a

dynamic storage-allocation problem

• A segmentation example is shown in the following diagram

Segmentation Hardware

Example of Segmentation

